Lubrication Regimes

Figure 1. Coefficient of Friction as a Function of Specific Film Thickness.¹

Figure 2. Frequency Domain from an Under-lubricated Bearing at Approximately 4,000 Revolutions per Minute²

Figure 3. Frequency and Time Domain for a Gearbox Running with a Lubrication Fault

Figure 4. 30 KHz Heterodyned Sound Files Showing Progressive Lubricant Failure

Figure 5. Sensor Sensitivity to Frequency Curves

Figure 6. Effect of Accelerometer Mounting on Frequency Response

Figure 7. Vibration Analyzer with Headphone Output and Headphone Filtering

Figure 8. Ultrasonic Analyzer to Measure High-Frequency Lubrication Stress

Figure 9. Frequency Domain Spectrum

Figure 10. PeakVue Frequency Domain

Figure 11. Autocorrelation of a PeakVue Time Waveform

Figure 12. Test Motor – Top Inboard Bearing Monitored

Figure 13. Time Domain Comparison

Figure 14. Frequency Domain Comparison

Figure 15. Autocorrelation of PeakVue Time Domain

	Ultrasonic	Accelerometer Listening	Conventional Vibration	Advanced Vibration
Qualitative	Yes	Yes	No	No
Quantitative/Trendable	Yes	No	Yes	Yes
Easy Sensor Mounting	Yes	No	No	No
High Frequency Isolation	Yes	Yes	No	Yes
Periodic Noise Seperation	No	No	No	Yes
Detailed Signal Analysis	Na	No	Yes	Yes
Quick Comparative Checks	Yes	Yes	No	No

Table 1. Predictive Technology Comparison for Lubrication Fault Analysis

Figure 16. Lubrication Test Stand

Figure 17. Over-greased Bearing

Figure 18. Effects of Over-greasing

Figure 19. Bearing with Grease Removed

Figure 20. Under-lubrication and Re-greasing Results

Figure 21. Sound Waveform Showing Decrease in Sound Level when Greased

Figure 22. SonicScan with Contact Probe

DB Levels for #11 Bearing Compared to the Average Bearing

Figure 23. Conveyor Bearings Result³

Figure 24. 75 HP GE Motor, Case 1

Figure 25. 75 HP GE Motor, Case 2

Figure 26. 450 HP Baldor Motor, Case 1

Figure 27. 450 HP Baldor Motor, Case 2

Figure 28. Conventional Vibration Data for a Pump

Figure 29. PeakVue Data for Pump

Figure 30. Autocorrelated PeakVue Waveform for Pump

Figure 31. Scrubber Fan, April 19 PeakVue Data

Figure 32. Scrubber Fan, May 29 PeakVue Data

Figure 33. Scrubber Fan, May 29 Autocorrelated PeakVue Data

Figure 34. Scrubber Fan PeakVue Comparison

Figure 35. Scubber Fan Conventional Data Comparison

Figure 36. Scubber Fan PeakVue Data after Lubrication Problem was Corrected

Figure 37. Exhaust Blower Frequency Data Domain Comparison

Figure 38. Exhaust Blower Frequency PeakVue Time Domain Comparison